Do one exercise from each of the two categories:
· Category 1: Multithreading and parallelism
· Category 2: Thread Synchronization
In all cases, assure:
1. 32 and 64-bit operation
2. Large file (> 4GB) operation where appropriate
3. Safe CRT Library usage and no buffer overflows
4. No resource leaks
In most cases, there are usage examples & screenshots in WSP4 and timings in App C.

CATEGORY 1: MULTITHREADING AND PARALLELISM
Objective: Manage threads and processes and improve application multi-core (and HT) performance. Test with large files (large enough for significant elapsed times).
Model: Boss/Worker.
Select one of:
1. wcMT (better: wcMTMM). x and xx. Compare results to WSP4 Table C-3. You can improve performance in other ways, such as:
a. Replace library functions (isalpha, etc)
b. Set compiler optimization
2. sortMT. x, xx. Remove the files size and number of threads restrictions. Compare timing to WSP4 pp 242-243.
3. geonames (new). x, xx, xxx. It uses the same boss/worker pattern. Read the comments (you need to download an 825 MB geographical names file).

CATEGORY 2: THREAD SYNCHRONIZATION
Objective: Manage thread-thread synchronization and communication
Model: Producer/Consumer, Pipeline
Select one of:
1. eventPC. x, xx, xxx. Compare results to WSP4 Table C-2.
2. ThreeStage. x, xxx. Several variations in QueueObj and the projects. See WSP4 Table C-6 for timings (compare with your results). "Cancel" and "CV" versions are based on future sessions. Fix the basic implementation (event, mutex), and then compare alternative implementations.
3. compMP (new). x, xx, xxx, xxxx. (My solution requires NT6.x, but you can get around that easily) Uses MMFs. Compare two files and list (sorted) the differences. Synchronization is required to manage the list and speculation. It should be much faster than CMD COMP.

EXTRA.
1. Compare your results with WSP4, Table 9-1 and Table C-5. Try "TimedMutualExclusion"
2. multiSem (x, xxx). Process shared named objects, including shared memory

